
Here goes... you actually don't need to know any fancy math for this. You just
need some basic probability. But it gets tedious.

Suppose we want to know the probability of having a queen next to a king.
(This is what I'll refer to as a "success".)

De�ne the following functions: P (q, k, n) = probability of having a queen next
to a king given that you have n cards left in the deck, q of which are queens,
k of which are kings, and that the previous card you dealt was neither a queen
nor a king.

In other words, P is the probability of success given a certain mix of cards
remaining. Note that n is the number of remaining cards, not the total number
of cards.

Let Q(q, k, n) = probability of success given that the previous card dealt was a
queen. The variables are the same as for the function P . Notice that capital Q
is a function and little q is a variable.

Let K(q, k, n) = probability of success given that the previous card dealt was a
king. The variables are the same as for the function P .

Now the easy part: Figure out the base cases.

• P (0, k, n) = 0, i.e. if you have no queens left, you have a zero probability
of success (since the previous card was neither a Q nor K.)

• P (q, 0, n) = 0, same reason as above.

• P (q, k, 0) = 0, (there are no cards left!)

• P (q, k, 1) = 0, i.e. you can't succeed if there's only one card left.

• Q(q, 0, n) = 0, i.e. you need at least one king remaining (but not a queen
� the previous card dealt was a queen after all)

• Q(q, k, 0) = 0, i.e. you need at least one card in order to succeed from
here.

• K(0, k, n) = 0, i.e. you need at least one queen remaining.

• K(q, k, 0) = 0, i.e. you need at least one remaining card.

Now the moderately tricky part. De�ne the functions recursively.

1



First let's do Q(q, k, n). If the card you just dealt was a queen and you have n
cards left, what are the ways you can succeed from here?

• Possibility 1: The next card you deal is a king. Probability of that is k
n .

• Possibility 2: The next card you deal is a queen, and then you succeed
with the remaining n−1 cards. Probability of the next card being a queen
is q

n , and the probability of success after that is Q(q− 1, k, n− 1). Overall
probability: q

n ·Q(q − 1, k, n− 1)

• Possibility 3: The next card is neither a queen nor a king. You then have
n − 1 cards left, and you succeed with the remaining n − 1 cards. The
probability of an indi�erent card being next is n−q−k

n and the probability
of success after that is P (q, k, n−1) (since you'd then be starting �fresh�).
Overall probability: n−q−k

n · P (q, k, n− 1).

• Total probability of success given that you just dealt a queen= Q(q, k, n) =
k
n + q

n ·Q(q − 1, k, n− 1) + n−q−k
n · P (q, k, n− 1)

Yes, this is a recursive function, but all the recursive evaluations involve smaller
parameter values, and the whole computation bottoms out eventually (because
of the base cases).

If you've gotten this far, then you're past the worst of it. You now de�ne
K(q, k, n) similarly and you get:

K(q, k, n) = q
n + k

n ·K(q, k − 1, n− 1) + n−q−k
n · P (q, k, n− 1)

This also follows by symmetry. (The role of the kings and queens are inter-
changeable.)

Finally, we de�ne P (q, s, n). Recall that this is the probability of success from
a new deck of n cards, or equivalently from a deck with n cards remaining but
where the previous card was neither a king nor a queen. Here are the three
cases to consider:

• Possibility 1: The next card you deal is a king and then you succeed from
there. Probability of that is k

n ·K(q, k − 1, n− 1)

• Possibility 2: The next card you deal is a queen and then you succeed
from there. Probability of that is q

n ∗Q(q − 1, k, n− 1)

• Possibility 3: Next card is indi�erent. Just like possibility 3 from earlier:
n−q−k

n · P (q, k, n− 1)

Therefore:

2



P (q, k, n) = k
n ·K(q, k− 1, n− 1)+ q

n ·Q(q− 1, k, n− 1)+ n−q−k
n ·P (q, k, n− 1)

Now you just write a computer program that codes up these three functions
and you evaluate P (4, 4, 52).

The one complication that comes up is that the recursion branches into a huge
tree. Each function call results in two other function calls, and n only drops by 1
each time! I think it's basically intractable unless you shorten the computation
somehow.

Here's how I �xed that:

1. I cached the values of K, Q, and P so that I never had to evaluate these
for the same parameters twice. Huge, huge savings. (I suppose this is
equivalent to doing the whole thing with dynamic programming, for those
of you who are familiar with that.)

2. Look at the �rst term of P : k
n ·K(q, k−1, n−1). Clearly if k is zero, there's

no need to evaluate K(q, k − 1, n − 1). You can make this optimization
in every instance of a recursive call, i.e. before you recurse, check the
coe�cient to see if it's zero. This results in a small speedup.

3. Finally, the formulas for Q and K are symmetric. So if you �ll in the
cache for the value of (for instance) Q(3, 2, 10) then you can also �ll in the
value for K(2, 3, 10). This also gives you a small speedup.

Once you make these optimizations, the whole things runs really fast, and it
spits out 0.486.

I realize this looks long and complicated, but it's really just a long sequence of
simple ideas. Let me know if anything here is unclear.

3


